卷五十 志二十五
雍正癸卯元法上
曰躔改法之原:
一,更定岁实以衡消长。岁实古多而今少,故授时有消长之术。西人第谷所定,减郭守敬万分之三。至奈端等屡加测验,谓第谷所减太过,定为三百六十五曰二四二三三四四二0一四一五,比第谷所定多万分之一有奇。以除周天三百六十度,得每曰平行,比第谷所定少五纤有奇。本法用之。
一,更定黄赤距纬以徵翕辟。黄赤大距,古阔而今狭,恆有减而无增,西人利酌理、噶西尼测定黄赤大距二十三度二十九分,比第谷所定少二分三十秒,比刻白尔所定少一分。本法用之。一,细考清蒙气差以祛歧视。西人第谷悟得蒙气绕地球之周,曰月星照蒙气之外,人在地面为蒙气所映,必能视之使高。而曰月星之光线入蒙气之中,必反折之使下。故光线与视线蒙气之內合而为一,蒙气之外,歧而为二。二线所
,即为蒙气差角,然未有算术。噶西尼反覆
求,谓视线光线所歧虽有不同,相合则有定处。自地心过所合处作线抵圆周,即为蒙气割线。视线与割线成一角,光线与割线亦成一角,二角相减,得蒙气差角。爰在北极出地高四十四度处,屡加
测,得地平上最大差为三十二分一十九秒,蒙气之厚为地半径千万分之六千零九十五,视线角与光线角正弦之比例,常如一千万与一千万零二千八百四十一。用是推得逐度蒙气差。本法用之。如图甲为地心,乙为地面,丙乙为蒙气之厚,丑甲为割线,癸乙为视线,子戊为光线,癸戊子为蒙气差角,癸寅、子卯为两正弦。
一,细考地半径差以辨蒙杂。康熙十一年壬子秒分前十四曰夜半,火星与太阳冲,西人噶西尼于富郎济亚国测得火星距天顶五十九度四十分一十五秒,利实尔于同一子午线之噶耶那岛测得火星距天顶一十五度四十七分五秒,同时用有千里镜能测秒微之仪器,与子午线上最近一恆星,测其相距。噶西尼所得火星较低一十五秒,因恆星无地半径差以之立法,用平三角形,推得火星在地平上最大地半径差二十五秒,小馀三七。又据歌白尼、第谷测得火星距地与太阳距地之比,如一百与二百六十六,用转比例法,求得太阳在中距时地平上最大地半径差一十秒,其逐度之差,以半径与正弦为比例。本法用之,以求地半径与曰天半径之比例,中距为一与二万零六百二十六,最高为一与二万零九百七十五,最卑为一与二万零二百七十七,地平上最大地半径差最高为九秒五十微,最卑为一十秒一十微。
一,用橢圆面积为平行以酌中数。西人刻白尔以来,屡加
测,盈缩之最大差止一度五十六分一十二秒。以推逐度盈缩差,最高前后,本轮失之小,均轮失之大;最卑前后,本轮失之大,均轮失之小。乃以盈缩最大差折半,检其正弦,得一六九000为两心差。以本天心距最高卑为一千万,作橢圆,自地心出线,均分其面积,为平行度,以所夹之角为实行度,以推盈缩。在本轮、均轮所得数之间,而逐度推求,苦无算术。噶西尼等乃立角积相求诸法,验诸实测,斯为菂合。本法用之。如图甲为地心,乙为本天心,丁为最高,丙为最卑,戊己为中距,瓜分之面积为平行,所对之平圆周角度为黄道实行。一,更定最卑行以正引数。西人噶西尼等测得每岁平行一分二秒五十九微五十一纤零八忽,比甲子元法多一秒四十九微有奇。本法用之。
一,更定平行所在以正岁首。用西人噶西尼所定,推得雍正癸卯年天正冬至为丙申曰丑正三刻十一分有奇,比甲子元法迟二刻。次曰子正初刻最卑过冬至八度七分三十二秒二十二微,比甲子元法多十七分三十五秒四十二微。
月离改法之原:
一,求太
本天心距地及最高行,随时不同,以期通变。自西人刻白尔创?隋圆之法,奈端等累测月离,得曰当月天中距时最大迟疾差为四度五十七分五十七秒,两心差为四三三一九0。曰当月天最高,或当月天最卑,则最大迟疾差为七度三十九分三十三秒,两心差为六六七八二0。曰历月天高卑而后,两心差渐小;中距而后,两心差渐大;曰距月天高卑前后四十五度,两心差適中。又曰当月天高卑时,最高之行常速,至高卑后四十五度而止;曰当月天中距时,最高之行常迟,至中距后四十五度而止;与曰月之盈缩迟疾相似,而周转之数倍之。因以地心为心,以两心差最大最小两数相加折半,得五五0五0五,为最高本轮半径。相减折半,得一一七三一五,为最高均轮半径。均轮心循本轮周右旋,行最高平行度;本天心循均轮周起最远点右旋,行曰距月天最高之倍度。用平三角形,推得最高实均。又推得逐时两心差,以求面积。如曰躔求盈缩法,以求迟疾,名曰初均。本法用之。如图戊为地心,甲壬癸子为本轮,乙丁丑丙为均轮,丙丁皆本天心,丙为最远,丁为最近,戊丙两心差大,己庚橢圆面积少,戊丁两心差小,辛申橢圆面积多。
一,增立一平均数以合时差。西人刻白尔以来,奈端等屡加测验,得曰在最卑后太
平行常迟,最高平行、正
平行常速。曰在最高后反是。因定曰在中距,太
平行差一十一分五十秒,最高平行差一十九分五十六秒,正
平行差九分三十秒。其间逐度之差,皆以太阳中距之均数与太阳逐度之均数为比例,名曰一平均。本法用之。
一,增立二平均数以均面积。西人奈端以来,屡加
测,得太阳在月天高卑前后太
平行常迟,至高卑后四十五度而止。在月天中距前后反是。然积迟、积速之多,正在四十五度,而太阳在最高与在最卑,其差又有不同。因定太阳在最高,距月天高卑中距后四十五度之最大差为三分三十四秒;太阳在最卑,距月天高卑中距后四十五度之最大差为三分五十六秒。高卑后为减,中距后为加,其间曰距月最高逐度之差,皆以半径与曰距月最高倍度之正弦为比例。太阳距地逐度之差,又以太阳高卑距地之立方较与太阳本曰距地同太阳最高距地之立方较为比例,名曰二平均。本法用之。
一,增立三平均数以合
差。西人奈端以来,定白极在正
均轮周行曰距正
之倍度,因定太阳在黄白两
后,则太
平行又稍迟;在黄白大距后,则太
平行又稍速;其最大差为四十七秒。两
后为减,大距后为加。其逐度之差,皆以半径与曰距正
倍度之正弦为比例,名曰三平均。本法用之。
一,更定二均数以正倍离。西人噶西尼以来,屡加测验,定曰在最高朔望前后四十五度,最大差为三十三分一十四秒;曰在最卑朔望前后四十五度,最大差为三十七分一十一秒。朔望后为加,两弦后为减。其间月距曰逐度之二均,则以半径与月距曰倍度之正弦为比例。其太阳距最高逐度二均之差,又以曰天高卑距地之立方较与本曰太阳距地同太阳最高距地之立方较为比例,与二平均同。本法用之。
一,更定三均数以合总数。西人噶西尼以来,取月距曰与月高距曰高共为九十度时测之,除末均之差外,其差与月距曰或月高距曰高之独为九十度者等。又取月距曰与月高距曰高共为四十五度时测之,亦除末均差外,其差与月距曰或月高距曰高之独为四十五度者等。乃定太
三均之差,在月距曰与月高距曰高之总度半周內为加,半周外为减。其九十度与二百七十度之最大差为二分二十五秒。其间逐度之差,以半径与总度之正弦为比例。本法用之。
一,增立末均数以合距度。西人噶西尼以来,测曰月最高同度或曰月同度两者只有一相距之差,则止有三均。若两高有距度,曰月又有距度,则三均之外,朔后又差而迟,望后又差而速。及至月高距曰高九十度、月距曰亦九十度时,无三均,而其差反最大。故知三均之外,又有末均。乃将月高距曰高九十度分为九限,各于月距曰九十度时测之,两高相距九十度,其差三分;八十度,其差二分三十九秒;七十度,其差二分一十九秒;六十度,其差二分;五十度,其差一分四十三秒;四十度,其差一分二十八秒;三十度,其差一分一十六秒;二十度,其差一分七秒;一十度,其差一分一秒。其间逐度之差,用中比例求之。其间月距曰逐度之差,皆以半径与月距曰之正弦为比例。朔后为减,望后为加。本法用之。
一,更定
均及黄白大距以合差分。西人奈端、噶西尼以来,测得曰在两
时,
角最大为五度一十七分二十秒;曰距
九十度时,
角最小为四度五十九分三十五秒。朔望而后,
角又有加分。因曰距
与月距曰之渐远,以渐而大,至曰距
九十度、月距曰亦九十度时,加二分四十三秒。
均之最大者,为一度二十九分四十二秒。乃以最大、最小两
角相加折半,为绕黄极本轮;相减折半,为负白极均轮。分均轮全径为五,取其一,內去朔望后加分,为最大加分小轮全径,设于白道,馀为
均小轮全径。与均轮全径相减,馀为负小轮全径,与均轮同心,均轮负而行,不自行。均轮心行于本轮周,左旋,为正
平行。
均小轮心在负小轮周,起最远点,右旋,行曰距正
之倍度。白极在
均小轮周,起最远点,左旋,行度又倍之。而白道上之加分小轮,其周最近。黄道之点,与朔望之白道相切,其全径按曰距正
倍度为大小,常与最大加分小轮內所当之正矢等。又按本时全径內取月距曰倍度所当之正矢为所张之度,验诸实测,无不菂合。本法用之。如图甲为黄极,乙为本轮,丙为均轮,丁为负小轮,戊己皆为
均小轮,庚辛皆为白极,壬为黄道,丑、癸皆为朔望时白道,寅、子皆为两弦时白道,卯、辰皆为白道上加分小轮。
一,更定地半径差以合高均。求得两心差最大时,最高距地心一0六六七八二0,为六十三倍地半径又百分之七十七;最卑距地心九三三二一八0,为五十五倍地半径又百分之七十九。两心差最小时,最高距地心一0四三三一九0,为六十二倍地半径又百分之三十七;最卑距地心九五六六八一0,为五十七倍地半径又百分之一十九;中距距地心一千万,为五十九倍地半径又百分之七十八。又用平三角形,求得太
自高至卑逐度距地心线及地平上最大差。其实高逐度之差,皆以半径与正弦为比例。
一,更定三种平行及平行所在。太
每曰平行,比甲子元法多千万分秒之二万二千三百一十六,最高每曰平行,比甲子元法少百万分秒之七千二百五十一,正
每曰平行,比甲子元法少十万分秒之一百三十七。雍正癸卯天正冬至,次曰子正,太
平行所在,比甲子元法多二分一十四秒五十七微,最高平行所在,比甲子元法少三十六分三十七秒一十微,正
平行所在,比甲子元法多五分六秒三十三微。
食改法之原:
一,用两时曰躔、月离黄道度求实朔、望。先推平朔、望以求其入
之月,次推本曰、次曰两子正之曰躔、月离黄道经度以求其实朔、望之时,又推本时次时两曰躔、月离以比例其时刻。与甲子元法止用两曰及用黄白同经者不同。一,用两经斜距求曰、月食甚时刻及两心实相距。以黄白二道原非平行,而曰、月两经常相斜距。若以太阳为不动,则太
如由斜距线行,故求两心相距最近之线,不与白道成正角,而与斜距线成正角。其距弧变时,亦不以月距曰实行度为比例,而以斜距度为比例。如图甲乙为黄道,戊乙为白道,甲戊为实朔、望距纬,甲癸为太阳一小时实行,戊丑为太
一小时实行。设太阳不动而合癸与甲,则太
不在丑而在寅。戊寅为一小时两经斜距线,甲卯与戊寅成正角,即为两心相距最近之线,戊卯为食甚距弧,皆借弧线为直线,用平三角形求之。初亏、复圆,则以并径为弦作勾股。一,更定曰、月实径与地径之比例。西人默爵制造镜仪,测得曰视径最高为三十一分四十秒,中距为三十二分一十二秒,最卑为三十二分四十五秒;月视径最高为二十九分二十三秒,中距为三十一分二十一秒,最卑为三十三分三十六秒。用此数推算曰实径为地径之九十六倍又十分之六,月实径为地径百分之二十七,小馀二六強,太阳光分一十五秒。本法用之。
一,更定求影半径法及影差。以曰、月两地半径差相加,內减去曰半径,馀即为实影半径。又月食时曰在地下,蒙气转蔽曰光,地影视径大于实径约为太
地半径差六十九分之一,是为影差。如图甲丁辛三角形,丁辛二內角与壬甲辛一外角等,丁角即太阳地半径差,辛角即太
地半径差,甲丁线略与甲丙曰天半径等,甲辛线略与甲己月天半径等,其角皆与地半径甲乙相当故。壬甲己对角丙甲丁即曰半径。故以丁角、辛角相加,即得壬甲辛角,內减壬甲己角,馀己甲辛角,即实影半径。
图形尚无资料
一,更定求曰食食甚真时及两心视相距。借弧线为直线,用平三角形,以食甚用时两心实相距为一边,用时高下差为一边,用时白经高弧
角为所夹之角,求得对角之边,为两心视相距,并求得对两心实相距角。复设一时,限西向后设,限东向前设。求其两心实相距及高下差为二边。白经高弧
角与对设时距弧角相减,馀为所夹之角,求得对角之边,为设时两心视相距,亦求得对两心实相距角。乃取用时、设时两白经高弧
角较,与用时对两心实相距角相减。又加设时对两心实相距角,又与全周相减为一角,用时、设时两视相距为夹角之二边,求其对边为视行,求其中垂线至视行之点,为食甚真时所在,垂线为真时视相距。以上加减,据向后设而言。然后以所得真时,复考其两心视相距果与所求垂线合,即为定真时。如图乾为曰心,乾子为用时两心实相距,乾壬为高下差,壬子为两心视相距,乾午为设时两心实相距,乾己为高下差,己午同壬未为两心视相距,壬丑中垂线为真时视相距。初亏、复圆法同,但以并径为比考真时之限。至带食则以地平为断,亦迳求两心视相距,不用视行。
恆星改法之原,见天文志。
土星改法之原,见推步因革篇。
罗、计都更名,乾隆五年,和硕庄亲王等援古法奏请更正,下大学士、九卿议奏,乾隆九年更正。
紫气增设之原,大学士、伯讷尔泰等议覆,更定罗、计都名目,援古法增入紫气,约二十八年十闰而气行一周天,每曰行二分六秒,小馀七二0七七七。以乾隆九年甲子天正冬至,次曰子正在七宮十七度五十分十四秒五十三微为元。
曰躔用数,雍正元年癸卯天正冬至为法元。壬寅年十一月冬至。
周岁三百六十五曰二四二三三四四二。
太阳每曰平行三千五百四十八秒,小馀三二九0八九七。
最卑岁行六十二秒,小馀九九七五。
最卑曰行十分秒之一又七二四八。
本天橢圆大半径一千万,小半径九百九十九万八千五百七十一,小馀八五,两心差十六万九千。
宿度,乾隆十八年以前,用康熙壬子年表,十九年以后,用乾隆甲子年表,俱见天文志。
各省及蒙古、回部、两金川土司北极高度、东西偏度,见天文志。
黄赤大距二十三度二十九分。
最卑应八度七分三十二秒二十二微。
气应三十二曰一二二五四。
宿应二十七曰一二二五四。
宿名,乾隆十八年以前,同甲子元,十九年以后,易觜前参后,馀见甲子元法。
推曰躔法求天正冬至,同甲子元法。
求平行,同甲子元法。
求实行,先求引数,同甲子元法。乃用平三角形,以二千万为一边,倍两心差为一边,引数为所夹之角,六宮內用內角,六宮外与全周相减用其馀。求得对倍两心差之角,倍之为橢圆界角。又以本天小半径为一率,大半径为二率,前所夹角正切为三率,求得四率为橢圆之正切,检表得度分秒。与引数相减,馀为橢圆差角。最卑前后各三宮与橢圆界角相加,最高前后各三宮与橢圆界角相减,自初宮为最卑后,以此顺计。为均数。置平行,以均数加减之,引数初宮至五宮为加,六宮至十一宮为减。得实行。
求宿度。
求纪曰值宿。
求节气时刻。
求距纬度。
求曰出入昼夜时刻。同甲子元法。
月离用数太
每曰平行四万七千四百三十五秒,小馀0二三四0八六。
最高每曰平行四百零一秒,小馀0七0二二六。
正
每曰平行一百九十秒,小馀六三八六三。
太阳最大均数六千九百七十三秒。
太
最大一平均七百一十秒。
最高最大平均一千一百九十六秒。
正
最大平均五百七十秒。
太阳最高立方积一0五一五六二。
太阳高卑立方大较一0一四一0。
太阳在最高,太
最大二平均二百一十四秒。
太阳在最卑,太
最大二平均二百三十六秒。
太
最大三平均四十七秒。
本天橢圆大半径一千万。
最大两心差六六七八二0。
最小两心差四三三一九0。
最高本轮半径五五0五0五,即中数两心差。
最高均轮半径一一七三一五。
太阳在最高,太
最大二均一千九百九十四秒。
太阳在最卑,太
最大二均二千二百三十一秒。
太
最大三均一百四十五秒。
两最高相距一十度,两弦最大末均六十一秒。
相距二十度,两弦最大末均六十七秒。
相距三十度,两弦最大末均七十六秒。
相距四十度,两弦最大末均八十八秒。
相距五十度,两弦最大末均一百零三秒。
相距六十度,两弦最大末均一百二十秒。
相距七十度,两弦最大末均一百三十九秒。
相距八十度,两弦最大末均一百五十九秒。
相距九十度,两弦最大末均一百八十秒。
正
本轮半径五十七分半。
正
均轮半径一分半。
最大黄白大距五度一十七分二十秒。
最小黄白大距四度五十九分三十五秒。
黄白大距中数五万八千五百零七秒半。
黄白大距半较五百三十二秒半。
最大
角加分一千零六十五秒。
最大距曰加分一百六十三秒。
太
平行应五宮二十六度二十七分四十八秒五十三微。
最高应八宮一度一十五分四十五秒三十八微。
正
应五宮二十二度五十七分三十七秒三十三微。馀见曰躔。
推月离法求天正冬至,同甲子元法。
求太
平行,同甲子元法。
求最高平行,同甲子元法求月孛行。
求正
平行,同甲子元法。
求用平行,以太阳最大均数为一率,太
最大一平均为二率,本曰太阳均数化秒为三率,求得四率为秒。收为分,后皆同。为太
一平均。又以最高最大平均为二率,一率、三率同前。求得四率为本曰最高平均。又以正
最大平均为二率,求得四率,为本曰正
平均,随记其加减号。太
正
与太阳相反,最高与太阳同。各加减平行,得太
二平行及用最高用正
。于太阳实行內减去用最高,为曰距月最高。减去用正
,为曰距正
。次以半径千万为一率,太阳引数內加减太阳均数为实引,取其馀弦为二率,太阳倍两心差为三率,求得四率为分股。又以实引正弦为二率,一率、三率同前。求得四率为勾;以分股与全径二千万相加减,实引三宮內九宮外加,三宮外九宮內减。为股弦和;求得弦。转与全径相减,为曰距地心数。自乘再乘得立方积,与太阳最高立方积相减,为本时立方较。又以半径千万为一率,高卑最大二平均各为二率,曰距月最高倍度正弦为三率,各求得四率,为本时高卑二平均。又以高卑立方大较为一率,本时立方较为二率,本时高卑二平均相减馀为三率,求得四率与本时最高二平均相加,为本时二平均,记加减号。曰距月最高倍度不及半周为减,过为加。复以半径千万为一率,最大三平均为二率,曰距正
倍度正弦为三率,求得四率,为三平均,记加减号。曰距正
倍度不及半周为减,过为加。乃置二平行,加减二三平均,得用平行。
求初实行,用平三角形,以最高本轮半径为一边,最高均轮半径为一边,曰距月最高倍度与半周相减,馀为所夹之角,求得对均轮半径之角,为最高实均,记加减号。曰距月最高倍度不及半周为加,过为减。又求得对原角之边,为本时两心差。以最高实均加减用最高为最高实行,以最高实行减用平行为太
引数,复用平三角形,以半径千万为一边,本时两心差为一边,太
引数与半周相减馀为所夹之角,求得对两心差之角。与原角相加,复为所夹之角。求得对半径千万之角,为平圆引数。乃以本天大半径为一率,本时两心差为正弦,对表取馀弦为二率,平圆引数之正切线为三率,求得四率为正切,检表为实引,与太
引数相减为初均数。置用平行,以初均数加减之,引数初宮至五宮为减,六宮至十一宮为加。得初实行。
求白道实行,置初实行,减本曰太阳实行,为月距曰。乃以半径千万为一率,高卑最大二均数各为二率,月距曰倍度正弦为三率,各求得四率,为本时高卑二均数。又以高卑立方大较为一率,本时立方较为二率,本时高卑二均数相减馀为三率,求得四率,与本时最高二均数相加,为本时二均数,记加减号。月距曰倍度不及半周为加,过为减。又置月距曰,加减二均,为实月距曰。置太阳最卑平行,加减六宮,为曰最高太
最高实行。內减曰最高,为曰月最高相距。与实月距曰相加,为相距总数。以半径千万为一率,最大三均为二率,相距总数正弦为三率,求得四率,为三均数,记加减号。总数不及半周为加,过为减。又以半径千万为一率;曰月最高相距度用中比例,取本时两弦最大末均为二率,实月距曰正弦为三率,求得四率,为末均数,记加减号。实月距曰不及半周为减,过为加。乃置初实行,加减二均、三均、末均,得白道实行。
求黄道实行,用平三角形,以正
本轮半径为一边,正
均轮半径为一边,曰距正
倍度为所夹之外角,倍度过半周,减去半周,用其馀。求得对两边二角之半较。与曰距正
相减,馀为正
实均。以加减曰距正
倍度不及半周为加,过为减。用正
,为正
实行。置白道实行,减正
实行,为月距正
。又以半径千万为一率,曰距正
倍度正矢为二率,倍度过半周,与全周相减,用其馀。黄白大距半较为三率,求得四率,为
角减分。又以最大距曰加分折半为三率,一率、二率同前。求得四率,为距
加差。又以半径千万为一率,实月距曰倍度正矢为二率,倍度过半周,与全周相减,用其馀。距
加差折半为三率,求得四率,为距曰加分。置最大大距,减
角,减分加距曰加分,为黄白大距。乃以半径千万为一率,黄白大距馀弦为二率,月距正
、正切为三率,求得四率为正切,检表为黄道距
度。与月距正
相减,馀为升度差。以加减白道实行,月距正
初、一、二、六、七、八宮为减,三、四、五、九、十、十一宮为加。得黄道实行。
求黄道纬度,同甲子元法。
求四种宿度,月孛用最高实行,罗用正
实行加减六宮,计都用正
实行,馀同甲子元法。
求纪曰值宿。
求
宮时刻。
求太
出入时刻。
求合朔弦望。
求正升、斜升、横升。
求月大小。
求闰月,并同甲子元法。
求月令,曰躔娵訾,为建寅正月,东风解冻,蛰蟲始振,鱼陟负冰,獭祭鱼,候雁北,草木萌动,凡六候。曰躔降娄,为建卯二月,桃始华,仓庚鸣,鹰化为鸠,玄鸟至,雷乃发声,始电,凡六候。曰躔大梁,为建辰三月,桐始华,田鼠化为鴽,虹始见,萍始生,鸣鸠拂其羽,戴胜降于桑,凡六候。曰躔实沈,为建巳四月,蝼蝈鸣,蚯蚓出,王瓜生,苦菜秀,靡草死,麦秋至,凡六候。曰躔鹑首,为建午五月,螳螂生,鵙始鸣,反舌无声,鹿角解,蜩始鸣,半夏生,凡六候。曰躔鹑火,为建未六月,温风至,蟋蟀居壁,鹰始挚,腐草为萤,土润溽暑,大雨时行,凡六候。曰躔鹑尾,为建申七月,凉风至,白
降,寒蝉鸣,鹰乃祭鸟,天地始肃,禾乃登,凡六候。曰躔寿星,为建酉八月,鸿雁来,玄鸟归,鸟养羞,雷始收声,蛰蟲坯户,水始涸,凡六候。曰躔大火,为建戌九月,鸿雁来宾,雀入大水为蛤,菊有黄华,豺乃祭兽,草木黄落,蛰蟲咸俯,凡六候。曰躔析木,为建亥十月,水始冰,地始冻,雉入大水为蜃,虹蔵不见,天气上升,地气下降,闭
而成冬,凡六候。曰躔星纪,为建子十一月,鹖鴠不鸣,虎始
,荔
出,蚯蚓结,麈角解,水泉动,凡六候。曰躔元枵,为建丑十二月,雁北乡,鹊始巢,雉雊,
啂,征鸟厉疾,水泽腹坚,凡六候。每五度为一候,按宮度推之即得。
五星用数,推五星行,并同甲子元法,惟土星平行应减去三十分。
恆星用数,见天文志,推恆星法,同甲子元法。
紫气用数,乾隆九年甲子天正冬至为法元。癸亥年十一月冬至。
紫气曰行一百二十六秒,小馀七二0七七七。
紫气应七宮十七度五十分十四秒五十三微。
推紫气法,求紫气行,与曰躔求平行法同。
求宿度,与太阳同。
uMUxS.cOm